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Ultrasonic velocity in sodium borate glasses 

M. K O D A M A  
Department of Industrial Chemistry, Kumamoto Institute of Technology, Ikeda, 
Kumamoto 860, Japan 

Ultrasonic velocities in sodium borate glasses are measured as a function of composition at a 
frequency of 10 MHz and at a temperature of 298 K by making use of the ultrasonic pulse 
echo overlap method. Elastic properties of these glasses are analysed in terms of the elastic 
internal energy due to deformation; elastic resistances of the network-former, B203, and the 
modifier, Na20, are obtained as a function of composition from the plot of MV 2 against x 2, 
where M is the molar mass of sodium borate glasses, Vthe velocity of sound and x2 the mole 
fraction of NazO. The elastic resistances of B203 and Na20 are as follows: (i) for x2<0.33, 
the elastic resistance of B203 is smaller than that of N a20; (ii) at x2=0.33, the elastic 
resistances of B203 and Na20 are equal; (iii) for x2>0.33, the elastic resistance of B203 iS 
greater than that of Na20; (iv) at x2,,~0.15, the elastic resistances of B203 and Na20 become 
respectively maximal and minimal; (v) at x2,,~0.23, the elastic resistances of B203 and Na20 
become respectively minimal and maximal; (vi) above x 2 = 0.36, the elastic resistance of Na20 
becomes negative. 

1. Introduction 
Properties of alkali borate glasses plotted against their 
compositions often exhibit maxima, minima or points 
of inflection. This has attracted the attention of nu- 
merous investigators and various studies on the struc- 
ture of these glasses have been made [1]. This paper 
reports on the relationship between the elasticity and 
the structure of sodium borate glasses. 

We shall notice that sodium borate glasses are 
composed of the network-former, B203, and the 
modifier, Na20. The purpose of the present paper is to 
elucidate the way in which the network-former and 
the modifier contribute to the elasticity of these glas- 
ses. For this purpose, ultrasonic velocities in sodium 
borate glasses are measured as a function of composi- 
tion, from which elastic resistances of the network- 
former and the modifier are obtained on the basis of a 
theory of elastic internal energy described in a pre- 
vious paper [2]. In this theory, the elastic resistance of 
a component is defined as the secondaorder derivative 
of the partial molar internal energy with respect to the 
Lagrangean strain. This elastic resistance is useful in 
order to have an insight into the relationship between 
the elasticity and the structure of glasses. The elastic 
resistances of B203 and N a 2 0  are discussed on the 
basis of the Krogh-Moe structure model [3] of alkali 
borate glasses. 

The velocity of sound in sodium borate glasses has 
been studied by Krause and Kurkjian [4] with the 
ultrasonic pulse superposition method and by 
Lor6sch et al. [-5] with the Brillouin scattering tech- 
nique. To accomplish the above analysis, however, it is 
necessary to know velocities of sound concerning 
numerous comPositions. This paper reports the velo- 
city of sound in a series of sodium borate glasses 
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measured with the ultrasonic pulse echo overlap 
method. 

2. Theoretical  background' 
We shall regard sodium borate glasses as two- 
component mixtures of B203 and Na20 and denote 
the compositions of these glasses by the formula 
xzNazO'xxB203, where xa and x2 are the mole 
fractions of B203 and Na20 , respectively, and xl 
-~x2=  1. 

First we shall summarize the theory of elastic inter- 
nal energy [-2] and give the formulae for expressing the 
elastic resistances of B203 and NazO. Since the ultra- 
sonic wave propagates under adiabatic conditions, the 
internal energy can be chosen as the most convenient 
thermodynamic potential. Denoting the mean molar 
internal energy, the partial molar internal energy of 
component 1 (here B203) , and the partial molar 
internal energy of component 2 (here Na20)  by Urn, 
Ux and U2, respectively, we have the relation 

U m = U 1 x  1 ~- U z x  2 = ( U  2 - U 1 ) x  2 + U 1 (1) 

Let M, V, q~ and Sm be the molar mass of the formula 
x2Na20 ' x1B203, the velocity of sound, the Lagran- 
gean strain of the sound wave (~ = t, 2, 3 refers to 
normal strains for the longitudinal wave and ~ = 4, 5, 
6 refers to shear strains for the transverse wave), and 
the mean molar entropy, respectively. Differentiating 
Equation 1 twice with respect to q~ at constant Sm and 
using the relation 

( ~ 2 U m / ~ q 2 ) s  m = M V  2 (2) 
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we have 

k(82(U281~2 ~ U-I)) (8201~ ~ 
m v  2 = smX2 ~- ( 3 )  \ 
In what follows we shall omit the subscript S m for 
brevity. 

If the strain occurs under adiabatic conditions, then 
the elastic internal energy, namely the internal energy 
of the body due to the elastic deformation, increases. 
Suppose that a given strain, ]]=, causes an increment of 
the elastic internal energy such that 

AU m = AUzx ,  + AU2x 2 (4) 

AUra, AU1 and AU2 being the increments of Um, U1 
and U2, respectively. These increments can be ex- 
pressed in the forms 

1 2 2 At.:m = 5 M V  n= (5) 

1/B2Ul 

1/B2U 2 ~ 2 

We can interpret M V  z, 82U1/Sq 2 and 8202/8]] 2 a s  

follows. The material constant M V 2 determines the 
elastic internal energy per unit amount of the mixture 
(here sodium borate glasses) generated for a given 
strain, and hence expresses the elastic resistance of the 
mixture to the deformation; likewise, 82U1/8]]2 and 
82U2/8]] 2 determine respectively the elastic internal 
energies per unit amount of component 1 and per unit 
amount of component 2 generated for a given strain, 
and hence they express the elastic resistances of the 
respective components to the deformation. In the 
above analysis, the velocity of sound is taken separ- 
ately with'respect to both the longitudinal velocity, V~, 
and the transverse velocity, V t. 

Equation 3 gives us a method for obtaining 
82U1/Srl 2 and 82U2/8]] 2 graphically from the curve 
of M V 2 against x2. This method is illustrated in Fig. 1. 

o,a x. 

0 x2 

Figure 1 Graphic determination of ~2U1/Sq2 and 82U'2/~'l]2. 

If at some point P(x2, M V  2) on the curve a tangent is 
drawn, it cuts the ordinate at x2 = 0 at the point B 
and the ordinate at x2 = 1 at the point D such that 
AB = ~2Ul/Sq2 and CD = 82U2/Sq 2. 

3. Experimental procedure 
3.1. Glass preparation 
A series of sodium borate glasses denoted by the 
formula x 2 N a 2 0 . x l B 2 0  3 was prepared in the glass 
formation range such that 0 < x2 < 0.38 [6] and at 
such intervals that the increment of x 2 equals 0.02. In 
order to obtain good transmission of ultrasonic waves, 
it is necessary to prepare glasses with high homogen- 
eity and without strains or bubbles. 

Electronic-grade sodium hydroxide (more than 
97.0% purity, the main residual being sodium carbon- 
ate) and boric acid (more than 99.7% purity) were 
used as the starting materials. The sodium hydroxide 
was used in the form of an aqueous solution whose 
concentration had been determined with a potentio- 
metric titration method. With the aim of preparing 
glasses with high homogeneity, amounts of the sodium 
hydroxide solution and the boric acid calculated to 
give 30 g in the melts were perfectly dissolved into 
water in a beaker made of polytetrafluoroethylene. 
The solution was transferred to a dry box and after the 
complete evaporation of the water a chemically re- 
acted powder was obtained. 

By making use of an SiC resistance electric furnace, 
the powder was fused in a 20 cm 3 platinum crucible 
which was placed in an alumina crucible. The fusion 
was carried out at temperatures from 900 to 1300 ~ 
for about 4 h with occasional stirring using a platinum 
wire; these temperatures were lowered as x2 increased. 
The melt was then poured into a cylindrical graphite 
mould 15 mm in diameter and 23 mm in depth which 
had been preheated at the glass transition temperature 
in an electric muffle furnace. This glass transition 
temperature was determined from Shelby's experi- 
mental points [7] through which a smooth curve was 
drawn. Subsequently, the cast glass in the mould was 
held at the glass transition temperature for 2 h, then 
cooled at a rate of 1 K min-1 to room temperature 
while passing dry nitrogen through the muffle furnace; 
a programmable temperature regulator was used f o r  
this temperature-time schedule. The residual melt was 
poured on to an aluminium plate and later used for 
chemical analysis. Sometimes small bubbles were ob- 
served in the cast glasses, but these were not used in 
the present experiments. The glass of each composi- 
tion was stored in a hermetic vial. 

The compositions of all the glasses were analysed 
with respect to both x 1 and x 2 with a neutralization 
titration described in the previous paper [2]. Each 
composition was determined by five analyses; t he  
probable error was less than 1.3 x 10 4 mole fraction 
for all the compositions studied. 

Although the density, 9, of each glass is not the 
requisite quantity for the present theory, it is necessary 
in order to calculate the elastic constant. For  this 
reason, the density of the cast glass was also measured 
at 298 K by a hydrostatic weighing method described 
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in the previous paper [2]. The error in the measure- 
ments of density was within 8 x 10 -4 gcm -3. 

T A B L E  I Analysed composition, molar mass, density and ultra- 
sonic velocities of longitudinal and transverse waves of sodium 
borate glasses at 298 K 

3.2. Ul t rasonic  ve loc i ty  
In order to measure the ultrasonic velocity, each glass 
specimen must have a pair of end faces that are flat o 

0.0197 
and mutually parallel. Each glass was first ground on 0.0411 
a glass plate using SiC abrasives by setting it in a 0.0619 
holder to maintain the two faces parallel, and sub- 0.0818 
sequently polished by hand with fine alumina abrasive 0.1021 
and machine oil on a flat glass plate. During polishing, 0.1222 

0.1428 
the length of the specimen was occasionally measured 0.1622 
at the centre and the four corners with a micrometer 0.1818 
reading to 1 gm. The polishing was continued until the 0.2016 
lengths of five portions coincided to within 2 Ixm; the o.22o7 
final length at the centre was taken as the length of the 0.2396 

0.2599 
specimen. Dimensions of polished glasses were 15 mm 0.2795 
in diameter and normally 12 mm long. Inspection with 0.2991 
a strain viewer showed that all the specimens were 0.3196 
transparent and almost free from stress. 0.3399 

Ultrasonic travel time was measured at a frequency 0.3594 
of 10 MHz and at a temperature of 298 K by means of 
the pulse echo overlap method [8]. The apparatus 
used was constructedin the present author's laborat- 
ory and the circuitry has been described in a previous 
paper [9]. X-cut and Y-cut quartz transducers were 
used for the generation and detection of the longitud- 
inal and transverse waves, respectively; the funda- 
mental frequency of  the transducers was 10 MHz, the 
electrode being in the form of a single-ended connec- v 
tion with a diameter of I0 mm. The transducer was ~' 
bonded to the specimen on one of the two parallel 
faces with phenyl benzoate [10]. The specimen with 
the transducer attached was set in a hermetic speci- 
men holder and controlled at 25 ~ by placing the 
holder on a water bath. o 

McSkimin [11] proposed a criterion for determin- 
ing the correct cyclic overlap between echoes with the ," 
purpose of measuring the ultrasonic travel time with g 
high accuracy. The McSkimin criterion was extended 
in the previous paper [2] to become applicable to 
ordinary glass specimens, and this was used in the 
present measurements. Once a pair of echoes are 
properly overlapped according to the McSkimin cri- 
terion, it is possible to measure the ultrasonic travel 
time within an error of 0.02% for round trips greater 
than 5 gs [11]. Since the velocity of sound is equal to 
the propagation distance divided by the travel time 
and the error in the measurements of sample length is 
within 0.02%, the error in the present measurements 
of ultrasonic velocity is within 0.04%. 

4. R e s u l t s  
Table I compiles the basic data obtained with the 
present series of experiments. The velocities of sound 
measured by Krause and Kurkjian [4], by Lor6sch 
et al. [5], and by the present author are shown in 
Fig. 2, from which we see that these three sets of 
experimental data are in close agreement. 

With the theory of elastic internal energy, we can 
now obtain ~ 2 U1/~  T] 2 and 3 2 U2/31] 2 which represent 

x2 M p V~ V, 
(gmo1-1) (gcm -3) (kms 1) (kms 1) 

69.62 1.838 3.469 1.901 
69.47 1.888 3.748 2.063 
69.31 1.933 3.988 2.199 
69.15 1.972 4.207 2.322 
68.99 2.014 4.410 2.439 
68.84 2.047 4.564 2.520 
68.69 2.077 4.705 2.595 
68.53 2.106 4.842 2.663 
68.38 2.131 4.957 2.721 
68.23 2.159 5.078 2.785 
68.08 2.186 5.197 2.857 
67.93 2.218 5.318 2.936 
67.79 2.251 5.438 3.017 
67.63 2.285 5.554 3.096 
67.48 2.316 5.655 3.162 
67.33 2.340 5.721 3.204 
67.18 2.364 5.765 3.228 
67.02 2.380 5.779 3.229 
66.87 2.386 5.744 3.196 
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Figure 2 Velocities of sound in sodium borate glasses as a function 
of x2: ( G ) V1 and ( �9 ) Vt measured by the present author; ( [] ) V I and 
( �9 ) Vt measured by Krause and Kurkjian [4]; ( ~ ) VI and ( �9 ) V~ 
measured by Lor6sch et al. [5]. 

respectively the elastic resistances of B20 3 and Na20.  
Fig. 3 shows the plots of MV~ and M V  2 against x 2. 
We see that both plots change in a similar manner 
with an increase in x 2. Applying the method shown in 
Fig. 1 to the curve of M V~ plotted against x2, we 
obtain ~ 2 U1/~ q 2 and 3 2 U2/3 r 12 concerning the lon- 
gitudinal wave (~ = 1, 2, or 3) and these are shown as 
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Figure 3 (C) ) M V~ and ( [] ) M Vt 2 as a function of x 2. 
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Figure 4 ( [] ) 9 2 Ux/9 q 2 and ( A ) ~ 2 U2/9 q 2 concerning the longit- 
udinal wave as a function of x2. For the sake of comparison, the plot 
of(C)) MV 2 against x2 is also included in this figure. 

a funct ion of  x z in Fig. 4. These values of  ~2U1/~y]2 
and ~2U2/~r12 are  ob ta ined  by fit t ing a quadra t i c  
funct ion to three ad jacent  po in ts  of  the (x2, M V  2) 
da t a  and  by  calcula t ing the tangent ia l  line to the 
quadra t i c  curve. F o r  the sake of  compar i son ,  the plot  
of M V 2 agains t  x2 is also inc luded in Fig. 4. Similarly,  
f rom the curve of  M V 2 p lo t t ed  agains t  x 2 we ob ta in  
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Figure 5 ( [] ) 9 2 U 1 / 9  q 2 and ( A ) 92 U2/~ rl 2 concerning the trans- 
verse wave as a function of x z. For the sake of comparison, the plot 
of (C)) M V 2 against x2 is also included in this figure. 

~2U1/~q2 and ~2U2/~q~2 concerning the t ransverse  

wave (cz = 4, 5, or  6) as shown in Fig. 5. 
We  see from Figs  4 and  5 tha t  the change in 

2 U 1 / ~ ] 7  2 agains t  x 2 depends  ha rd ly  apprec iab ly  on 
the difference between the longi tud ina l  and  the t rans-  
verse waves, and  so does the change in ~2Uz/~t12 
agains t  x 2. We  c a n  summarize ,  with respect to bo th  
the longi tud ina l  and  the t ransverse  strains,  the elastic 
resistances of B203 and  N a 2 0  ill sod ium bora te  
glasses as follows. 

1. When  x2 < 0.33, we see that  ~2U1/~q2 
< ~2Uz/~r12, indica t ing  that  the elastic resistance of 

B203 is always smal ler  t h a n  tha t  of N % O  in this 
compos i t i on  range. 

2. At  x 2 = 0.33, we see that  ~2U1/~q2 
= ~ 2 U2/~ 112, indica t ing  that  the elastic resistances of  

B203 and  N a 2 0  are equal  at this composi t ion .  
3. When  x2 > 0.33, we see that  ~2U1/~q2 

> ~ 2 U2/~ q 2 indica t ing  tha t  the elastic resistance of 

BzO 3 now becomes greater  than  that  of N a 2 0  in this 
c o m p o s m o n  range. 

4. At  x2 g 0.15, ~2U1/~rl~z and ~2Uz/~q2 show 

respectively a m a x i m u m  and a min imum,  indica t ing  
that  the elastic resistances of B203 and  N a 2 0  become 
respectively max imal  and min imal  at this compos i -  
tion. 

5. At  x 2 ~ 0.23, ~2U1/~T]2 and  ~2U2/~]72 show 
respectively a m in imum and a max imum,  indica t ing  
that  the elastic resistances of B203 and N a 2 0  become 
respectively min imal  and max imal  at this compos i -  
tion. 

6. Above  x 2 = 0.36, ~2U2/~r12 takes negative val- 
ues. This indicates  that  the componen t  N a 2 0  becomes 
uns table  to elastic deformat ion.  

Incidental ly ,  the two curves of ~ 2 U2/~ 172 agains t  x 2 
shown in Figs  4 and 5 have poin ts  of inflection at 
x 2 = 0.05. The cause of these inflection poin ts  is un- 
clear at present  and  will not  be discussed in this paper .  
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5. Discussion 
We shall discuss the above elastic properties on the 
basis of the Krogh-Moe structure model [3] of alkali 
borate glasses. This model is now supported by studies 
by means of such experimental techniques as nuclear 
magnetic resonance [12-14] and Raman scattering 
[15] and the change in the amount of each borate 
group as a function of x2 is summarized in a simple 
graph by Griscom [1]. 

We shall first interpret elastic property No. 1 in the 
list given in Section 4 above. In the composition range 
x 2 < 0.33, boron atoms changefrom the three-fold to 
the four-fold coordination of oxy-g~n-atoms by_ addi- 
tion o f  the modifier to form a three-dimensiofial- 
connection of the network. The mechanical condition 
that ~2U1/~ll2 < M V  2 < ~2U2/~yI2 for x2 < 0.33 
means that the glasses in this composition range are 
composed of soft B203 and hard Na20.  This indicates 
that the modifier is enclosed within the network in 
such a way that the modifier prevents the deformation 
of the surrounding soft network. 

We shall next interpret elastic property 3. In the 
composition range x 2 > 0.33, the three-dimensional 
connection of the network has been partly broken 
up by the formation of non-bridging oxygen ions. 
The mechanical condition that ~2U1/~q2 > M V  2 

> ~2Uz/~r12 for x2 > 0.33 indicates that the glasses 
in this composition range are now composed of hard 
B20 3 and soft Na20.  This indicates that Na20  is not 
enclosed within the network but situated outside a 
partly destroyed borate network, which leads to the 
modifier being easily deformed by the application of 
stress. Moreover, the fact that the elastic resistance of 
B203 in the range x2 > 0.33 is much greater than that 
in the range x2 < 0.33 indicates that the component 
B203 forms into smaller rigid borate groups in the 
range x2 > 0.33. 

Elastic property 2 indicates the intermediate state 
between the above two states. The glass at this com- 
position is the most rigid throughout the composition 
range studied, since each of M V 2 and M Vt 2 shows the 
greatest value at x2 = 0.33. The Krogh-Moe model 
shows that the borate network at x2 = 0.33 is made up 
mainly of diborate group. 

We shall next consider elastic property 4 at the 
composition of x2 = 0.15. Alkali borate glasses often 
exhibit borate anomalies near this composition [1]. 
The fact that the elastic resistance of B203 is maximal 
at this composition indicates that the borate network 
becomes rigid to a high degree. The Krogh-Moe 
model shows that, at the composition of x2 = 0.t5, the 
three different species of boroxol ring, tetraborate 
group and diborate group exist in large quantities at 
the same time. It seems therefore that a combination 
of these three borate groups forms the rigid net- 
work. Consequently, the degree to which the modifier 
prevents the deformation of the surrounding rigid 
network decreases. The minimum in the thermal 
expansion coefficient near x 2 =0.15 [7] may be 
attributed to the occurrence of this rigid network. 

We shall next consider elastic property 5 at the 
composition of x2 = 0.23. At this composition, the 
borate network becomes soft again and at the same 
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time the degree to which the modifier prevents the 
deformation of this soft network becomes greater. The 
Krogh-Moe model shows that, at the composition of 
x 2 = 0.23, the boroxol ring has completely disap- 
peared and the tetraborate and diborate groups exist 
almost in a one-to-one ratio. It seems therefore that 
this one-to-one combination of tetraborate group and 
diborate group forms this soft network, 

Finally we shall consider elastic property 6. Strictly, 
~2U2/~q~ for the transverse wave becomes negative 
above x z = 0.36 (Fig. 5) and ~2U2/~1~2 for the longit- 
udinal wave shows a tendency to become negative 
above x 2 = 0.37 (Fig. 4). If ~2U2/~r12 < 0, we see 
from Equation 7 that AU2 < 0 always with respect to 
any strain. This mechanical condition means that the 
component N a2 0  becomes unstable to elastic defor- 
mation. Owing to this elastic instability of N a2 0  , it 
becomes difficult for N a 2 0  to form glasses with B203. 
As a result, sodium borate melts tend to crystallize 
above x 2 = 0.36; the upper limit of the glass formation 
range (0 _< x2 < 0.38) may be attributed to this elastic 
instability of Na20.  

6. Conclusions 
The ultrasonic velocity in sodium borate glasses de- 
noted by the formula xzNa20 .XlB203  was measured 
as a function of x 2 from which the elastic resistances of 
the network-former, B203, and the modifier, Na~O, 
were obtained on the basis of the elastic internal 
energy. The elastic resistances of BzO 3 and N a 2 0  
were interpreted in terms of the Krogh-Moe structure 
model and the following conclusions were obtained. 

1. In the composition range x 2 < 0.33, the elastic 
resistance of N a2 0  is always greater than that of 
B203. This mechanical condition indicates that the 
modifier is enclosed within the network in such a way 
that the modifier prevents the deformation of the 
surrounding soft network. 

2. At x2 = 0.33, the elastic resistances of B203 and 
Na20  are equal. The glass at this composition is the 
most rigid. The Krogh-Moe model suggests that the 
network of this rigid glass is composed mainly of 
diborate groups. 

3. In the composition range x2 > 0.33, the elastic 
resistance of B203 becomes greater than that of 
Na20.  This mechanical condition indicates that 
NaaO is not enclosed within the network but situated 
outside a partly destroyed borate network. Moreover, 
the elastic resistance of BzO3:in the range x2 > 0.33 
becomes much greater than that in the range 
x 2 < 0.33, indicating that B20 3 forms into smaller 
rigid borate groups in the range x2 > 0.33. 

4. At x2 ~ 0.15, the elastic resistances of B203 and 
Na2 O become respectively maximal and minimal. 
This mechanical condition indicates that the borate 
network becomes rigid to a high degree and the degree 
to which the modifier prevents the deformation of the 
surrounding network decreases. The K r o g h - M o e  
model suggests that a combination of boroxol ring, 
tetraborate group and diborate group forms this 
rigid network. Owing to this rigid network, the 



thermal expansion coefficient shows a minimum near 
x 2 -- 0.15. 

5. At x 2 ,,~ 0.23, the elastic resistances of B 2 0 3  and 
N a 2 0  become respectively minimal and maximal. 
This mechanical condition indicates that the borate 
network becomes soft to a high degree and the degree 
to which the modifier prevents the deformation of the 
surrounding network increases. The Krogh-Moe 
model suggests that a one-to-one combination of 
tetraborate group and diborate group forms this soft 
network. 

6. Above x z = 0.36, the elastic resistance of N a / O  
becomes negative. This mechanical condition means 
that the component  N a 2 0  becomes unstable to elastic 
deformation. As a result, sodium borate melts tend to 
crystallize above x 2 = 0.36. 
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